Package: CCA 1.2.2
CCA: Canonical Correlation Analysis
Provides a set of functions that extend the 'cancor' function with new numerical and graphical outputs. It also include a regularized extension of the canonical correlation analysis to deal with datasets with more variables than observations.
Authors:
CCA_1.2.2.tar.gz
CCA_1.2.2.zip(r-4.5)CCA_1.2.2.zip(r-4.4)CCA_1.2.2.zip(r-4.3)
CCA_1.2.2.tgz(r-4.4-any)CCA_1.2.2.tgz(r-4.3-any)
CCA_1.2.2.tar.gz(r-4.5-noble)CCA_1.2.2.tar.gz(r-4.4-noble)
CCA_1.2.2.tgz(r-4.4-emscripten)CCA_1.2.2.tgz(r-4.3-emscripten)
CCA.pdf |CCA.html✨
CCA/json (API)
# Install 'CCA' in R: |
install.packages('CCA', repos = c('https://sebdejean.r-universe.dev', 'https://cloud.r-project.org')) |
- nutrimouse - Nutrimouse dataset
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 1 years agofrom:969734bb9d. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 29 2024 |
R-4.5-win | OK | Oct 29 2024 |
R-4.5-linux | OK | Oct 29 2024 |
R-4.4-win | OK | Oct 29 2024 |
R-4.4-mac | OK | Oct 29 2024 |
R-4.3-win | OK | Oct 29 2024 |
R-4.3-mac | OK | Oct 29 2024 |
Exports:cccomputestim.regulimg.estim.regulimg.matcorloomatcorplt.ccplt.indivplt.varrcc
Dependencies:ashbitopscliclustercolorspacedeSolvedotCall64fansifarverfdafdsfieldsFNNggplot2gluegtablehdrcdeisobandkernlabKernSmoothkslabelinglatticelifecyclelocfitmagrittrmapsMASSMatrixmclustmgcvmulticoolmunsellmvtnormnlmepcaPPpillarpkgconfigpracmaR6rainbowRColorBrewerRcppRCurlrlangscalesspamtibbleutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Canonical correlation analysis | CCA-package CCA |
Canonical Correlation Analysis | cc |
Additional computations for CCA | comput |
Estimate the parameters of regularization | estim.regul |
Plot the cross-validation criterion | img.estim.regul |
Image of correlation matrices | img.matcor |
Leave-one-out criterion | loo |
Correlations matrices | matcor |
Nutrimouse dataset | nutrimouse |
Graphical outputs for canonical correlation analysis | plt.cc |
Individuals representation for CCA | plt.indiv |
Variables representation for CCA | plt.var |
Regularized Canonical Correlation Analysis | rcc |